ALGÈBRES DE BOOLE

1. CALCUL DES PROPOSITIONS ET DES PRÉDICATS

L'objectif est d'introduire quelques éléments de logique en liaison avec l'enseignement de l'informatique. Il s'agit d'une brève étude destinée à familiariser les étudiants à une pratique élémentaire du calcul portant sur des énoncés.

CONTENUS	CAPACITÉS ATTENDUES	COMMENTAIRES
Calcul propositionnel		
Proposition, valeur de vérité. Connecteurs logiques :		On dégage les propriétés fondamentales des opérations
- négation (non P , $\neg P$, \overline{P}); - conjonction (P et Q , $P \land Q$); - disjonction		introduites, de manière à déboucher ensuite sur un exemple d'algèbre de Boole. En situation, on aborde les lois de Morgan.
$(P \text{ ou } Q, P \vee Q)$; - implication; - équivalence.	• Traiter un exemple simple de calcul portant sur un énoncé.	On se limite au cas où l'utilisation d'une table de vérité ou de propriétés élémentaires du calcul propositionnel permet de conclure sans excès de technicité.
	• Utiliser des connecteurs logiques pour exprimer une condition.	Cette capacité est également mise en œuvre en algorithmique.
Calcul des prédicats		
Variable, constante. Quantificateurs \forall , \exists .	Passer du langage courant au langage mathématique et inversement.	On se limite à des cas simples de prédicats portant sur une, deux ou trois variables.
Négation de $\forall x, p(x)$; négation de $\exists x, p(x)$.	• Exprimer, dans un cas simple, la négation d'un prédicat.	On met en valeur l'importance de l'ordre dans lequel deux quantificateurs interviennent.

2. LANGAGE ENSEMBLISTE

Sans développer une théorie générale des ensembles, l'objectif est de consolider et de prolonger les acquis des étudiants sur les ensembles en liaison avec l'enseignement de l'informatique.

CONTENUS	CAPACITÉS ATTENDUES	COMMENTAIRES
Langage ensembliste		
Ensemble, appartenance, inclusion, ensemble vide.		
Ensemble $P(E)$ des parties d'un ensemble E .		
Complémentaire d'une partie, intersection et réunion de deux parties.	• Traiter un exemple simple de calcul portant sur des ensembles finis.	On dégage les propriétés fondamentales des opérations ainsi introduites, de manière à déboucher ensuite sur un exemple d'algèbre de Boole.
		En situation, on aborde les lois de Morgan.
Ensemble des éléments x d'un ensemble E satisfaisant à une proposition $p(x)$.		On interprète en termes ensemblistes l'implication, la conjonction et la disjonction de deux propositions, ainsi que la négation d'une proposition.

3. CALCUL BOOLÉEN

Cette brève étude est à mener en coordination étroite avec l'enseignement de l'informatique. Il convient d'introduire la notion d'algèbre de Boole à partir des deux exemples précédents. Il s'agit essentiellement d'effectuer des calculs permettant de simplifier des expressions booléennes.

CONTENUS	CAPACITÉS ATTENDUES	COMMENTAIRES
Calcul booléen		On adopte les notations usuelles \overline{a} , $a + b$ et ab .
Algèbre de Boole : – définition ; – propriétés des opérations, lois de Morgan.	 Mener des calculs portant sur des variables booléennes. Simplifier une expression booléenne en utilisant : un tableau de Karnaugh ; les règles de calcul booléen. Passer d'une situation donnée à une expression booléenne. 	On se limite à des cas simples, comportant au plus trois variables booléennes, pour lesquels on peut conclure sans excès de technicité. On signale l'intérêt des connecteurs non-ou (nor) et non-et (nand), ou exclusif oux (xor).
	une expression booléenne correspondante et inversement.	