GRAPHES ET ORDONNANCEMENT

1. GRAPHES

L'objectif est d'introduire et de mettre en œuvre, dans des situations concrètes très élémentaires et sans théorie générale, des algorithmes permettant de résoudre les problèmes figurant dans la colonne « Capacités attendues ».

CONTENUS	CAPACITÉS ATTENDUES	COMMENTAIRES
Graphes		
Modes de représentation d'un graphe fini simple orienté : représentation géométrique, tableau des successeurs ou des prédécesseurs, matrice d'adjacence booléenne.	• Passer d'un mode de représentation à un autre, pour un graphe donné.	La définition d'un graphe fini simple orienté est limitée à la donnée d'un ensemble de sommets et d'un ensemble d'arcs.
Chemin d'un graphe : définition , longueur, circuit, boucle, chemin hamiltonien.		
Puissances entières et booléennes de la matrice d'adjacence.	 Obtenir et interpréter, pour une matrice d'adjacence M donnée, les coefficients: d'une puissance entière de M; d'une puissance booléenne de M. Mettre en œuvre un algorithme permettant d'obtenir les chemins de longueur p d'un graphe. 	On considère uniquement le cas d'un graphe non valué (non pondéré). À partir d'exemples très élémentaires et sans introduire une théorie générale, on montre l'intérêt des méthodes matricielles mettant en œuvre l'addition et la multiplication booléennes des matrices d'adjacence.
Fermeture transitive d'un graphe.	Mettre en œuvre un algorithme permettant d'obtenir la fermeture transitive d'un graphe.	
Pour un graphe sans circuit : niveau d'un sommet, niveaux du graphe.	Mettre en œuvre un algorithme permettant d'obtenir les niveaux dans un graphe sans circuit.	Il convient de savoir déterminer les niveaux, sans qu'aucune méthode ne soit imposée.
	Représenter géométriquement un graphe en l'ordonnant par niveaux.	
Arborescence.	III VOULA.	La notion de connexité étant hors programme, on se limite à la présentation d'exemples simples d'arborescences à partir de leur représentation géométrique, sans recherche d'une caractérisation générale.

Chemin optimal en	Mettre en œuvre un algorithme	On observe l'importance du
longueur.	permettant d'obtenir une	résultat : tout sous-chemin d'un
	optimisation d'un graphe :	chemin optimal est optimal.
	– en longueur ;	
Graphe valué (pondéré) :	– en valeur (graphe valué).	On fait une simple présentation
définition ;	1,000	des graphes valués, sans théorie
– chemin optimal en valeur.		particulière.

2. ORDONNANCEMENT

L'objectif est double : sensibiliser l'étudiant aux problèmes d'ordonnancement et traiter manuellement un algorithme. Aucune justification théorique des algorithmes utilisés n'est au programme. On abordera MPM ou PERT. On s'attachera surtout à la compréhension des mécanismes. Et, les cas traités resteront suffisamment modestes pour que la rapidité ne soit pas un critère d'évaluation fondamental.

CONTENUS	CAPACITÉS ATTENDUES	COMMENTAIRES
Ordonnancement		On présente quelques cas concrets simplifiés et on les interprète.
Ordonnancement: - méthode MPM ou méthode PERT, principe de représentation; - dates au plus tôt, au plus tard; - tâches et chemins critiques;	• Résoudre un problème d'ordonnancement en mettant en œuvre la méthode des potentiels métra (MPM) ou la méthode PERT, et interpréter les résultats obtenus à travers les notions abordées.	Aucune autre compétence théorique n'est requise. On se limite à des cas très simples où l'interprétation ne soulève aucune difficulté théorique.
– marge totale, libre, certaine.	• Reconnaître une contrainte non incluse dans la modélisation et en tenir compte lors de l'interprétation.	